Weka-Parallel:
Machine Learning in Parallel

Sebastian Celis and David R. Musicant
Department of Mathematics and Computer Science
Carleton College
One North College Street
Northfield, MN 55057

celiss@carleton. edu, dmusican@carleton.edu

Abstract

We present Weka-Parallel, which is a modification to Weka, a pop-
ular machine learning software package. Weka-Parallel expands upon
the original program by allowing one to perform n-fold cross-validations
in parallel. This added parallelism causes Weka-Parallel to demon-
strate a significant speed increase over Weka by lowering the amount
of time necessary to evaluate a dataset using any given classifier. Weka-
Parallel is designed for the researcher who needs to do intense cross-
validation calculations and wishes to transparently and simply harness
the power of multiple computers. All the details of cross-validation,
result aggregation, and multiprocessor communication are completely
handled by Weka-Parallel. The practitioner is freed from implement-
ing these tasks, and need only ready the remote machines for incoming
work requests.

1 Introduction

Cross-validation is a primary methodology in measuring the success of ma-
chine learning algorithms [3, 5]. Techniques such as classification, regression,
clustering, and feature selection all make use of cross-validation techniques
in predicting generalization success. Cross-validation is inherently paral-
lelizable, as it requires repeatedly breaking the data into different segments,
running an algorithm on some of the segments, and using the remaining data
to test the results. The desire to do calculations in parallel has become pop-
ular in recent years due to the dropping prices of multiprocessor machines, as

well as the increasing availability of networked commodity single-processor
machines. We present Weka-Parallel, a modification to Weka [9], that allows
one to easily implement cross-validation in parallel.

Weka is a flexible environment for running cross-validation on datasets
using a variety of machine learning algorithms. Because it is written in Java,
Weka, proves to be a versatile tool that runs seamlessly on most platforms.
This versatility also makes Weka an ideal tool for academic and research
institutions.

Weka-Parallel fills a specific niche in the machine learning community. It
is aimed at the researcher who has access to parallel processing capabilities
and does not wish to be concerned with details of parallel programming.
Java is an excellent language to use when writing a program that involves
distributed computing as the java.net package is both simple to use as well
as powerful. Weka-Parallel uses this package to achieve its distributed com-
puting capabilities which in turn assists the machine learning practitioner.

There are a number of general purpose systems in place for automating
parallel process management and communication. Beowulf [8] provides a
mechanism for clustering a collection of individual computers to appear as
one shared machine. Condor [4] runs silently on machines throughout an
installation, and can take advantage of idle machines as requested. While
both these environments would also provide the capability to do parallel
cross-validation, both require significant setup costs. Moreover, a machine
learning practitioner using either of these systems would still have to write
code to handle partitioning of data for cross-validation. Weka-Parallel is
relatively easy to install, as the user need only have Java and Weka-Parallel
installed in a directory that each machine can see. Thus, the software can
be either installed on a shared network drive, or it can be installed on
each machine individually. Weka-Parallel handles everything else, including
partitioning the data for cross-validation, transferring it out to the individual
machines, and aggregating and reporting results.

We now provide an overview of the rest of the paper. Section 2 re-
views cross-validation techniques. Section 3 gives a high level overview of
how Weka-Parallel functions. In Section 4 we describe how a user would go
about running Weka-Parallel. We show some experimental results in Sec-
tion 5 indicating the effective integration and performance of Weka-Parallel.
Finally, we conclude and provide thoughts for future directions in Chapter
6.

2 Cross-Validation Overview

While cross-validation applies to any number of machine learning problems,
we will restrict ourselves to classification problems for purposes of this dis-
cussion. We therefore assume that we have a dataset with m points and k
features, indicated by the m x k matrix A. We also have an m x 1-dimensional
vector y, each element of which contains the value that the corresponding
row in A is to predict. For classification problems, the elements of y corre-
spond to discrete classes.

In order to test how well a particular machine learning algorithm will gen-
eralize to future data, the most common technique is n-fold cross-validation.
The matrix A, and the corresponding elements of ¥, are partitioned horizon-
tally into n separate groups. For each of n iterations, a distinct group (or
fold) of the data is held out from the processes as a test set, and the remain-
ing data is used as a training set. The machine learning algorithm is run on
the training set, and validated via the test set. This yields n estimates of
the generalizability of the algorithm as illustrated by its performance on the
test set, which are then averaged together to yield the overall test set accu-
racy. Most often, n = 10 (tenfold cross-validation) or n = m (leave-one-out
cross-validation).

We note that cross-validation serves a number of purposes in machine
learning beyond measuring the expected success of a single technique. It is
often used for comparing multiple algorithms, where statistical tests can be
performed for determining whether there are significant differences between
algorithms [1]. Cross-validation is also a common tool to use in conjunction
with a tuning set for finding optimal parameter settings.

3 Weka-Parallel Philosophy

Weka-Parallel was designed for the sole purpose of drastically decreasing
the amount of time necessary to run cross-validation on a dataset using any
given classifier. This is particularly true when a computationally intense
classifier is used, such as Weka’s “J48” decision tree, as well as when the
number of folds to be calculated is large. With the knowledge that each fold
in an n-fold cross-validation is calculated independently, we set out to modify
Weka, so that different folds could be calculated on different computers. All
of the information could then be aggregated on a single machine where the
final results would be displayed to the user.

The first hurdle in creating such an application was determining the best

way to get the machine running Weka to connect to the machines that will
help with the computations. The most simple and elegant way that we found
to do this is to use a simple connection established with the Socket class
in the java.net package. Each contributing machine could start a daemon
that would listen on a specific port. Once a connection between the machine
running Weka and the remote machine was established, the socket could then
be used to open both an ObjectOutputStream and a DataOutputStream to
send all of the necessary information back and forth between the computers.

This architecture provides the capability to set up any number of com-
puters (which we will call the servers) to run daemons that listen for in-
coming connections. Then, a computer running Weka-Parallel (which we
will call the client) can connect to these servers to start distributing work
through streams.

The next step is getting the remote machines to correctly use the data
to calculate specific folds. We considered using Java RMI (Remote Method
Invocation) [2] to have the client directly call the necessary methods on each
of the servers. This would have reduced some of the complexity since the
client machine would be in complete control by sending all of the necessary
information, calling all of the necessary methods, and accessing all of the cal-
culated results. Unfortunately, Java’s implementation of RMI proved to be a
lot of work to setup. For example, in order to use RMI, the server program
must create and install a security manager as well as register the remote
objects with the RMI remote object registry for bootstrapping purposes [7].
The registry requires additional setup by the user which would have been
an unnecessary complication for anyone who wished to use Weka-Parallel.

The solution that proved simpler than RMI involved having the client
transmit integer codes to indicate which method to run. This is accom-
plished simply by using the sockets that were already created in the opening
of the connection. For example if Weka-Parallel is running through Weka’s
interactive GUI, each server must be instructed to generate graphical data
associated with the folds being evaluated. In order to give the server the
necessary information, the client sends out an initial integer that denotes
whether Weka is being run from the command-line or through a GUIL. Once
the server receives this information, it immediately expects to receive every-
thing else it needs in order to do the computations for the cross-validation.
In this case, the server expects to receive a copy of the entire dataset, the
name of the classifier that is being used, as well as the total number of folds
that need to be calculated. The final piece of information sent to the server
is an integer that represents the index denoting which fold that server should
start running.

At this point, the client waits for the servers to finish the calculations
and then send the results back. Each server has all of the information it
needs to run a particular fold. While each server runs its fold, its connection
with the client is left open for simplicity as well as for speed.

Once a server has finished sending back the results from its fold, the client
does one of two things. If the client sees that all of the results have been
returned and that no more folds need to be calculated, then the connection
with this server is simply dropped. If there are still more folds that need to
be finished, an index designating one of these folds is sent over the socket to
the server. This continues until the n-fold cross-validation is complete. Also,
to improve overall efficiency, the client machine itself acts as a server and
works on calculating folds at the same time that all of the server machines
are also doing calculations.

Which index the client should send to each remote machine is not im-
mediately obvious. Weka-Parallel uses a round-robin algorithm. It starts
by assigning the first fold, and then the second, and so on. Once each fold
has been assigned, the program starts again at the beginning, assigning in
turn each fold that has not already been completed. This continues until
the cross-validation is complete. In an ideal situation, with all computers
being the same speed and no computers crashing or losing their connection
to whatever network they are on, no fold would have to be assigned more
than once. But, computers do crash and networks do go down. Thus, the
round-robin algorithm along with the client machine helping with the com-
putations act as a safeguard, making sure that no matter what happens, as
long as the client machine continues to run Weka-Parallel, the computations
will get done.

4 Running Weka-Parallel

4.1 Initial Setup

First, install Weka-Parallel on every machine that is to take part in the
distributed calculations. Do this the exact same way you would install
Weka. These installation instructions can be found in the file README
included with both Weka and Weka-Parallel.

A Weka-Parallel session is run on a single client machine and a number
of distributed servers. Each server runs software in the background that
listens for incoming requests placed by the client and then fulfills them. For
each computer that is to be used as a distributed server, launch the software
by entering the following line at a command line prompt on that computer:

java weka.core.DistributedServer <port number>

Every computer with the DistributedServer program running can act as
a server and will listen on a specified port for all incoming work requests.
Each request that the server receives is given its own thread, thus allow-
ing many computers to connect to this one server at the same time. This
threading will also take advantage of multi-processor machines. If a server
has two processors, alter the configuration file described below by telling
Weka-Parallel to connect to this computer more than once. This is done by
entering the address on the configuration file twice.

This server program can be launched manually on each computer or can
be placed in a startup script that runs when each computer boots. A log of
all connections processed from the server software is automatically sent to
the output screen but can be redirected to a text file if the user so chooses.

4.2 Configuration File

In order for WEKA to know which computers to distribute work to, a
config file needs to be present at 7/.weka-parallel on UNIX systems and
C:\WINDOWS\.weka-parallel on Windows systems. The first line of the
config file should be:

PORT=XXXX

where XXXX is the port number on which each instance of Distribut-
edServer is listening. The remainder of the config file should consist of the
addresses of each computer running an instance of DistributedServer with
one address per line.

The configuration file can be created manually or can be created through
Weka-Parallel’s GUI in the cross-validation options under the classifiers
pane.

4.3 Running Weka in Parallel

When using a command line interface, to do cross-validation within Weka
in parallel, simply add the -a tag onto a standard Weka command line. For
example:

weka.classifiers. j48.J48 -t weather.arff -a

When using the GUI, after selecting a dataset and classifier, first press
the button next to cross-validation to alter the cross-validation settings.
Then check the box marked "Run in parallel” and then hit ”OK”. Finally,
run the classifier and the cross-validation will occur in parallel.

5 Experimental Results

In order to demonstrate the effectiveness of Weka-Parallel, we ran the “J48”
decision tree classifier included in Weka with default parameter settings on
the waveform-5000 dataset from the UCI repository [6]. The waveform-
5000 dataset contains 5300 points in twenty-one dimensions, and the goal is
to find a classifier that correctly distinguishes between the three classes of
waves. We ran 500-fold cross-validation on this dataset using up to fourteen
computers from our instructional labs. We had exclusive access to these
machines while running the experiments. Each computer has a single 2 GHz
Pentium 4 processor with 512 MB of memory, and runs Redhat Linux 6.3.
We performed our 500-fold cross-validation fifteen times, always using one of
the machines for the main client process and varying the number of machines
that were allowed to be used as servers to help with the computing. We also
ran an unmodified version of Weka as a control with which to compare
everything. The resulting running times are shown in Figure 1.

As is to be expected, significant savings in time can be seen as more
computers are added to the task. It should be noted that the “zero remote
machines” experiment timed above is a slightly different experiment from
the rest, in that Weka-Parallel was told to run in parallel but was not given
any remote machines to which it could connect. In all other experiments, the
client machine simply connected to the specified number of remote machines.

As can be seen from the horizontal line denoting the amount of time
Weka, took to run the experiment, the overhead of the added networking
code in Weka-Parallel is negligible. Thus, it takes approximately the same
amount of time for Weka to produce results for any given query as it does
for Weka-Parallel to produce the same results when Weka-Parallel has no
remote machines to use. Then, as more remote computers are added, Weka-
Parallel takes significantly less time to perform the same task.

6 Conclusions

Weka-Parallel is an easy to use, highly generalizable tool for performing
n-fold cross-validation testing of machine learning algorithms. It scales ex-

Total running time (secs)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
of remote machines

Figure 1: Speedup in parallel cross-validation on single processor 2 GHz
Pentium 4 machines. The horizontal line indicates running time on a single
processor using an unmodified version of Weka.

tremely well, and is easily run on any machine that supports Java. For
future versions of the software, we hope to parallelize more aspects of ma-
chine learning that Weka supports.

Weka-Parallel is available for download at http://www.mathcs.carleton.
edu/weka, and is free for research and academic purposes.

Acknowledgments

Research described in this report was supported by a grant from the Howard
Hughes Medical Institute, and by Carleton College.

We thank Mike Tie, Technical Associate at Carleton College for his as-
sistance in appropriating and configuring the machines.

References

[1]

[7]

8]

[9]

Thomas G. Dietterich. Approximate statistical tests for comparing

supervised classification learning algorithms. Neural Computation,
10(7):1895-1924, 1998.

William Grosso. Java RMI. O’Reilly, Sebastopol, CA, 2002.

R. Kohavi. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In C.S. Mellish, editor, Proceedings of the
14th International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, 1995.

M. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International Conference on Dis-
tributed Computing Systems, pages 104111, San Jose, CA, June 1988.
IEEE Computer Society Press.

T. M. Mitchell. Machine Learning. McGraw-Hill, Boston, 1997.

P. M. Murphy and D. W. Aha. UCI repository of machine learning
databases, 1992. http://www.ics.uci.edu/"mlearn/MLRepository.
html.

Northeastern University, College of Computer Science. Java rmi tutorial.
http://www.ccs.neu.edu/home/kenb/com3337/rmi_tut.html.

T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake,
and C. V. Packer. BEOWULF: A parallel workstation for scientific com-
putation. In Proceedings of the 24th International Conference on Parallel
Processing, pages 1:11-14, Oconomowoc, WI, 1995.

The University of Waikato. Weka 3 - machine learning software in java.
http://www.cs.waikato.ac.nz/ml/weka/.

